Portada

STRATIFIED LIE GROUPS AND POTENTIAL THEORY FOR THEIR SUB-LAP IBD

SPRINGER
11 / 2010
9783642090998
Inglés

Sinopsis

Elements of Analysis of Stratified Groups.- Stratified Groups and Sub-Laplacians.- Abstract Lie Groups and Carnot Groups.- Carnot Groups of Step Two.- Examples of Carnot Groups.- The Fundamental Solution for a Sub-Laplacian and Applications.- Elements of Potential Theory for Sub-Laplacians.- Abstract Harmonic Spaces.- The ?-harmonic Space.- ?-subharmonic Functions.- Representation Theorems.- Maximum Principle on Unbounded Domains.- ?-capacity, ?-polar Sets and Applications.- ?-thinness and ?-fine Topology.- d-Hausdorff Measure and ?-capacity.- Further Topics on Carnot Groups.- Some Remarks on Free Lie Algebras.- More on the Campbell-Hausdorff Formula.- Families of Diffeomorphic Sub-Laplacians.- Lifting of Carnot Groups.- Groups of Heisenberg Type.- The Carathéodory-Chow-Rashevsky Theorem.- Taylor Formula on Homogeneous Carnot Groups.